A215/220 Series

DC-Operated, Gravity-Referenced Servo Accelerometers

.... the first choice in precision

Introduction

Sherborne Sensors' range Servo Accelerometers measure vector acceleration with high accuracy using a closed loop force balance torquer mechanism.

All A200 Series Accelerometers operate as a closedloop torque balance servo system. Refering to the illustration below, the pendulous mass 'A' develops a torque proportional to the product of its mass unbalance and the applied acceleration.

The movement of mass 'A' is detected by position sensor 'B' whose output signal is connected to a servo amplifier. The resulting current is fed into the torquer motor 'C' which then develops a torque exactly equal to, but directly opposed to the initial torque from the pendulous mass 'A'. Mass 'A' stops moving, assuming a position minutely differing from it's zero 'g' position. Simultaneously, the current to the torquer motor is fed through a stable resistor to provide an output voltage proportional to the applied acceleration. The system is electronically damped by means of a phase advancing network within the integrated servo amplifier. By adjusting the parameters of the servo amplifier and related electronic networks, the operating characteristics of a servo accelerometer can be optimised to suit a particular application.

In addition to the instruments offered in this bulletin, Sherborne Sensors design custom accelerometers for specific applications, often manufactured and tested to conform to exacting military standards.

Features

- Available in ranges from ±1g to ± 20g
- High resolution down to 0.05 mg
- Closed loop force balance system
- Flight qualified versions available
- Self-Test facility
- DC Input DC Output
- Manufactured to AS9100C and ISO 9001:2008 standards
- 1g bias option to compensate for earth's gravity (A220 only)

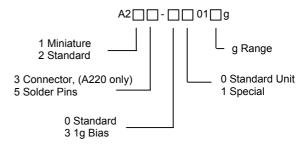
Applications

- Flight test monitoring
- Accident data collection
- Structural health monitoring
- Flight simulators
- Braking control in mass transit systems
- Road bed analysis
- Data acquisition systems
- Low frequency analysis

CE

Specifications

Environmental Characteristics


Operating Temperature Range	°C (°F)	-55 to +95 (-67 to 203)				
Survival Temperature Range	°C (°F)	- 65 to 105 (-85 to 221)				
Constant Acceleration	g	100g in all 3 axes without damage				
Shock		100g, 11ms ½ sine				
Altitude	m (ft)	30,000 (98,400)				
Environmental Sealing		IP65				
EMC Directive		EN61326: 1998				
EMC Emissions		EN55022: 1998				
EMC Immunity		EN61000-4-2 inc A1: 1998 & A2: 2001				
		EN61000-4-3: 2002				
		EN61000-4-4: 2004				
		EN61000-4-6: 1996 inc A1: 2001				
		EN61000-4-8: 1994 inc A1: 2001				

Specifications by Range @ +25°C (+77°F)		± 1g	± 2g	± 5g	± 10g	± 20g		
Excitation Voltage	Volts dc	± 15 (± 10%)						
Current Consumption	mA	<± 15						
Full Range Output (FRO) (see note 1)	Volts dc	± 5						
Output Standardisation	% FRO			± 1				
Output Impedance	Ω (nom)	5000	2500	5000	2500	5000		
Output Noise (DC to 10kHz)	V rms			< 0.005				
Non-linearity (see note 2)	% FRO (max)	± 0.05	± 0.05	± 0.05	± 0.05	± 0.10		
Hysteresis	% FRO (max)			0.02				
Resolution	% FRO (max)			0.0005				
Natural Frequency	Hz(min)	90	100	115	130	150		
Sensitive Axis-to-Case Misalignment	deg			< ± 0.2				
Cross-axis Sensitivity (see note 3)	% FRO (max)	± 0.2	± 0.2	± 0.2	± 0.2	± 0.5		
Zero Offset (see note 4)	% FRO	< ± 0.1						
Damping Ratio		0.6 ± 0.1						
Insulation Resistance	MΩ @ 50 Volts dc	≥ 20						
Thermal Zero Shift	%FRO/°C (%FRO/°F) (max)	$\leq \pm 0.002 (0.004)$						
Thermal Sensitivity Shift	%Reading/°C (%Reading/°F)(max)	≤ ± 0.02 (0.04)						
Weight	Grams (ozs)	57 (2) A215; 115 (4.1) A220						

- 1. Full Range Output (FRO) is defined as the full acceleration excursion from positive to negative, i.e. ± 2g = 4g 2. Non-linearity is determined by the method of least squares
- 3. Cross-axis sensitivity is the output of unit when subjected to full range acceleration in cross-axis
- 4. Zero offset is specified under static conditions with no vibration inputs

+ve ACCELERATION +ve_SIGNAL — ø3.56/3.61 [0.140/0.142] 32.2 57.1 [2.250] [1.268] MAX 7.00 5.9 [0.276] [0.232] A215 6 PIN BAYONET LOCK CONNECTOR TO MIL-C-26482 SHELL SIZE 10 52.0 [2.05] MAX [1.035] 24.0 [0.945] 41.40 [1.63] 6 PIN TERMINALS A223 6 PIN TERMINALS Ø0.75 EQUISPACED ON A 10.0 PCD [1.537] A225 66.20 [2.608]

MODEL DESIGNATION & ORDERING CODE

Specify Mating Connector 3CON-0009 if required (A220 only)

Electrical Connections

Pin A +15V dc excitation Pin B 0V dc excitation/output Pin C -15V dc excitation Pin D ±5V dc output Not Connected Pin E Pin F Self Test

In North America: Email: nasales@sherbornesensors.com Email: sales@sherbornesensors.com Website: www.sherbornesensors.com

